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Abstract-In Part I of this study, a general theory of optimal layout for long-span truss-grids
was outlined, and then it was applied to circular simply supported truss-grids whose span length
does not exceed a certain limiting value. The optimal solution for the above problem was shown
to consist of a purely circumferential moment field. It is established in Part II that for simply
supported circular truss-grids of longer spans, the optimal solution takes on a more complicated
topography consisting of both circumferential and radial moment fields. In addition, optimal
solutions are presented for circular truss-grids that are built-in (clamped) along their edge.
Finally, a weight comparison for various types of solutions is given.

OPTIMAL SOLUTION FOR LONG-SPAN SIMPLY SUPPORTED CIRCULAR TRUSS·

GRIDS

It was established in Part I that for simply supported circular truss-grids within a limiting
radius [see eqn (45) and Fig. 6 of Part Il, the optimal solution consists of purely cir
cumferential moments (Me ~ 0, Mr = 0, chords in circumferential direction only). For
greater radii (R > R1im), the same type of solution would violate one of the optimality
conditions [eqn (37)t or (44) corresponding to Mr = 0] and, hence, it cannot be optimal.

It will be shown herein that for truss-grids with R > Rlim the optimal solution
consists of the following:

(i) a purely circumferential moment field (Me ~ 0, M r == 0) in an inner region (r ~
a);

(ii) a purely radial moment field (Me == 0, Mr ~ 0) in the outer region;
(iii) a circumferential positive moment impulse along the circular edge of the truss

grid. The mechanical function of the latter is to balance the radial moments along
the simply supported edge by a (concentrated) ring of heavy circumferential
chords.
Denoting the displacements u. (r) and u2(r) for the inner and outer region of the

above type of solution, the optimality conditions (36)-(39), boundary condition

u2(R) = -(I + c)R, (53)

and continuity condition [UI (a) = u2(a)l furnishes the following displacement fields:

for r ~ a:

uj = - (1 + u.)(r + cR),

u.(r) = e{a2+cR1a+R(1 +c)]-(r+cR)2}/2{cosh[(R - a)13l

(54a)

+ [(1 + c/2)RIf3l sinh[(R - a)~]) - 1; (54b)

for r ~ a:

- U2 = - (l + U2) + cRui, (55a)

u2(r) ea(R - r){cosh[(R - r)~] + [(R + a)/~] sinh[(R - r)13]) - 1, (55b)

t Equation numbers (1)-(52) refer to Part I of this study.
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where
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ex = cRf2. (56)

The boundary condition given in eqn (53) follows from (38) since at r = R the
inequality Me > 0 holds (Me takes on a positive impulse).

For the solution in eqns (54) and (55), the additional continuity condition ui (a) =
u2(a) furnishes the optimal value of a:

tanh[(R - a)~l = (R - a)~/(aR + a:R + exa - I). (57)

Optimal a values (aopt), given by eqn (57) for various shear cost factor (c) and
radius (R) values, are shown in Fig. 1, and the corresponding displacements are shown
in Fig. 2. It can be checked easily that for R ~ RUm [eqn (45) and Fig. 6 of Part Il, Gopt
= R, which means that the optimal solutions consist of an inner region (with Me;;?; 0,
M r == 0) only. This agreement with the RUm value derived in Part I constitutes an
independent check on the range of validity of the two types of optimal solutions.

It is shown in the Appendix that the displacements u2(r) in the outer region also
satisfy the optimality condition (39) for Me == O.

The moment field in the inner region (r ~ a, Me ;;?; O. M r == 0) is given again by
eqn (47). For the outer region (r ;;?; a, Me == 0, M r ~ 0), the equilibrium condition

(58)

and boundary conditions

furnish the moment field:

(59)

(for r ;;?; a) rMr = ear[A cosh(r~) + B sinh(r~)l - cR + r

R
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Fig. I. Simply supported circular trusses: optimal radius of region boundary as a function of
the radius of support (R) and shear cost factor (c).
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Fig. 2. Pragerian deflection fields for truss-grids with R > R1im •

A= -sinhfaI3J{eaca+a,2) [e2a2y:;;j2 2a (erf
a :';R - erf~) - 1J/13

+ (cR - a) e-aa{cosh(al3) + [a sinh(al3)]/13} (61)

B = cosh(al3) {v;;n 2a eCa2/2)+2a2+aa (elf a + cR _ elf CR) _ ea2/2+aa
v'2 v'2

- (cR - a) e-aa [13 tanh(al3) + a]} /13. (62)

The optimal moment fields for R == 1.8 and various c values are shown in Fig. 3. The
vertical dimension of the Me-impulse indicates its integrated value RMr(R). The actual
magnitude of the impulse (Dirac distribution, 8), following from equilibrium is

MeEDGE == RMAR)8(R - r),

where RMr(R) can be readily determined from eqns (60)-(62).
SAS ll.2-H

(63)
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Fig. 3. Optimal moment fields for truss-grids with R > Rhm .

The total weight et> of the system can be obtained by evaluating et> = 2 If: l\Jr dr,
taking the impulse at r = R into consideration or by taking the total shear V = (rMr ),

at r = R, less the external load (R Z
) plus the total weight [ - 2R zMr(R)] caused by the

moment impulse:

(64)

which can be evaluated by making use of eqns (60)-(62).
Alternatively, the minimum total weight can be determined from eqn (4), making

use of (54)-(56):

(65)

The first integration in the right-hand side of (65) can be carried out directly, and the
second one after expressing Uz from (55a):

U2 = U2 - 1 + eRui.

The resulting total weight becomes

et>min = 2{cosh[(R - a)l3] + (R + ex) sinh[(R

- a)I3]/I3} e(az/Z+aR+aal [ _e-(2au+az/ZJ

+ 1 - 2ex eZa2 v;J2 (erfeR~ a - erf ~) ]

+ 2{Rui(R) - au2(a) + uz(a) + eR[ - auz(a)

- ui(R) + ui(a) + eRu2(a) + R - aJ} - R 2
•

(66)

(67)

The results from eqns (67) and (64) have shown a complete numerical agreement.
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Fig. 4. Total structural weight for various types of layouts (optimal solution in continuous line).
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Figure 4 shows the total structural weight $ for various types of solutions as a
function of Rand c. Optimal solutions are represented in continuous line. It can be
seen that at the limiting radius Rlim, the purely circumferential solution (Me;;:: 0, M r

== 0) and the partly circumferential, partly radial solution have the same total weight.
However, for R > R lim , the purely circumferential solution (broken line) becomes highly

.l
3.0 R'

2.5

2.0

1.0

1-__-+-~I\.;..~I.5 Ie -0.31

•
o 1.0 2.0

Fig. S. Total structural weight as a function of region boundary radius for solutions with a purely
circumferential moment field in the inner region and a purely radial moment field in the outer
region.
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uneconomical. The information in Fig. 4 constitutes a second independent confirmation
of the values of the limiting radius in Fig. 6 of Part 1, originally derived from the
optimality criterion (37).

Figure 5 indicates graphically the variation of the total weight <1>, given by eqn (67)

or (64) with eqns (60)-(62), as a function of the region boundary radius a for the case
of c = 0.3. It can be seen that the cost curves have a single local minimum, and the
latter occurs at the GoP! values (vertical line segments in Fig. 5) given in Fig. I. Figure
5 therefore constitutes an independent confirmation of the results derived from opti
mality criteria. It can also be seen from Fig. 5 that for R ~ R lim (e.g. R = I), aop, =
R.

Figure 4 also shows in dash-dot line the total weight of a third (nonoptimal) solution
consisting of purely radial moments (Mr ~ 0, Me == 0) which is derived in the next
section.

A COMPARISON OF OPTIMAL AND NON OPTIMAL SOLUTIONS: A PURELY

RADIAL MOMENT FIELD

In order to demonstrate the extent of savings achieved by layout optimization, a
nonoptimal solution with M r ~ 0, Me == 0, will be considered. The equilibrium equation
then becomes

(68)

and the boundary conditions

(69)

furnishing

rMr = eC"{[e-aRAR(c + 1) - sin(AR)] cos(x'r) + [cos(AR) - ex e-cx.RR(c

+ 1)] sin(x'r)}/[x' cos(>..R) - ex sin(AR)) - cR - r, (70)

where

ex = cRI2, (71 )

The total cost can again be calculated by either integrating the specific cost \)i =
M r - cR(rMr )' Ir,

(72)

or by taking the total shear force V == (rMr )' Ir along the edge (r = R) and subtracting
the total external load (in nondimensional notation: R 2

):

(73)

The result in eqn (73) can also be obtained by expressing \)i from the equilibrium
equation (33) and then integrating the expression f~ \)ir dr by parts. Both eqns (72) and
(73) furnish the total structural weight

<1> == (- 2){[eaR X. - R(l + c) sin(AR)]/[X. cos(AR) - ex sin(AR)] - I} - R 2
. (74)

The same total structural weight may be derived from eqn (4) furnishing <1> =
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2 IC ur dr where u must satisfy eqn (36) for M > 0:

- u" = 1 + u + cRu'

together with the boundary conditions
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(75)

u'(O) = -[1 + u(O)]cR, u(R) = O. (76)

The above dual formulation is valid because for the considered solution u(r) is still
a Pragerian deflection for a structural universe consisting of radial trusses only.

Equations (75) and (76) imply

with

giving

u = e-ar[A cos (Ar) + Bsin(Ar)] - 1,

A = AeaR/[A cos(AR) - 0: sin(AR)],
B = 0: eaR/[o: sin(AR) - Acos(AR)],

(77)

(78)

u = eaIR-r)[A cos(Ar) - 0: sin(Ar)]/[A cos(AR) - 0: sin(AR)] - 1. (79)

The total weight can then be determined by integrating by parts and expressing
repeatedly u from eqn (75):

ct>/2 = LR

ur dr = [( - u' - r - eRu)r]C - LR

(- u' - r - eRu) dr

= (-u'(R) - R)R + R2/2 - u(O) + eR[ -u'(R) - R + u'(O) + eRu(O)] (80)

Expressing u' (0) from eqn (76), we have after simplifications

ct>/2 = -R(l + c)u'(R) - R 2(c + e2 + 112) - u(O).

Substituting

u(O) = Ae eaR - 1,
u' (R) = 6[ - 20:A cos(AR) + (0:2 - A2) sin(AR)]

with

6 = [A cos(AR) - 0: sin(AR)] -I ,

we have

(81)

(82)

ct> = - 2{(R + cR)6[ - 20:A cos(AR) + (0:2 - A2) sin(AR)]

+ Ae eaR - 1 + R 2 (c + e2 + 112)}, (83)

or

ct> = - 26{ - (R + eR)20:A cos(AR) + (R + eR)(0:2 - A2) sin(AR)

+ AeaR + [eR 2 + e2R 2][A cos(AR) - 0: sin(AR)]} + 2 - R 2

= -26{AeaR + sin(AR)[(R + 20:)(-0:2
- A2)]} + 2 - R 2 (84)
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Fig. 6. Spanning capacity (RmaxJ for purely radial moment fields.

Observing that - a 2
- A.2 = - a 2 - 1 + a 2 = - 1, eqn (84) then reduces to eqn

(74).
Figure 4 shows the variation of the total weight <I> of the purely radial solution

with Rand c in dash-dot line. It can be seen that for R~°(no self-weight), both radial
and circumferential solutions give the same total structural weight <1>.

The purely radial solution reaches its spanning capacity (<I>~ cc) when in eqn (74)

A. cos(AR) - a sin(AR) = 0. (85)

The variation of the spanning capacity Rmax. as a function of the shear cost factor
c is shown in Fig. 6.

CIRCULAR TRUSS·GRIDS WITH BUILT-IN EDGES

Considering circular truss-grids with built-in (clamped) edges, the optimal solution
will be shown to be similar to that for long-span simply supported circular grids, except
that the kinematic boundary condition at the edge becomes

u2(R) = -cR, (86)

and no Me-impulse is necessary to balance the radial moments at the edge. The bound
ary condition in eqn (86) can be derived by considering the cost functional in (35) with
rV = Me - (rMr )' and applying the usual transversality conditions (e.g. [1], p. 22) for
variations of M r at r = R. Alternatively, the modified Prager-Shield condition, (3) and
(19), requires a shear strain of

~ = - u2(R) == cRll + u(R)] = cR (87)

at the clamped end (r = R). For eqn (86) and the remaining boundary conditions u2(R)
== 0, and continuity condition UI (a) = u2(a), the optimality conditions (36) and (38)
furnish the Pragerian displacements:

for °~ r ~ a:

Me ~ 0, - u; = (1 + ul)(r + cR),

for a ~ r ~ R:

Ul (r) = {cosh[(R - a)~] + (a1~) sinh[(R - a)~]}

x e - {(r2 - (12)/2 + cR[r - (R + a1/2]) - 1; (88)

Me == 0, M r ~ 0, -U2 = -(1 + U2) + cRu2, (89)

U2 = (ea(R-r)/~){~ cosh[(R - r)~] + a sinh[(R - r)~]} - 1.
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Table 1. Comparison of total structural weight (cjI) of various designs and percentage (p) of excess weight
of nonoptimal designs over the optimal solution considering the case c = 0.3.

Design

A B C

R Optimal solution M, !II! 0, Me > 0 throughout Me '"" 0, M, > 0 throughout

J.5 0.628239 0.653255 >oc
(3.98%)

2.5 J.l99229 3.109522 >oc
(159.3%)

3.0 1.889007 12.352402 >oc
(553.9%)

The optimal value of a is then furnished by the kinematic condition u; (a) =
u2(a), implying

(a + a)/13 = {13 sinh[(R - a)l3l + a cosh[(R a)I3]}/{13 cosh[(R

- a)l3l + a sinh[(R - a)I3]}. (90)

The variation of aopt as a function of c and R is shown in Fig. 7. For the special case
of c = 0, eqn (90) reduces to

a = tanh(R - a), (91)

which was derived earlier by Rozvany and Wang[2l
The total cost <I> = 2 Iff ur dr is given by the same expression as in eqn (67) except

that the coefficient (R + a) of the sinh term is replaced by a.
The moment field with Me ~ 0, M r == 0 in the inner region is again given by (47)

and in the outer region with M r ~ 0, Me == 0 by eqn (62). The total structural weight
<1>, given by the total shear force along the edge less the nondimensional external load,

a opt

R

2.01.0 R

Fig. 7. Clamped circular: truss-grids optimal values of the region boundary.
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is furnished by
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Fig. 8. Pragerian deflection fields for clamped circular truss-grids.

<P = -2(rMr)' Ir=R - R 2 (92)

and has been found in complete agreement numerically with the total weight given by
the modified version of eqn (67).

The displacement fields given by eqns (88) and (89) are shown in Fig. 8, and the
corresponding moment fields are shown in Fig. 9.

M,
·1.0

Fig. 9. Optimal moment fields for clamped circular truss-grids.
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EXTENT OF SAVINGS ACHIEVED BY LAYOUT OPTIMIZATION

In this section, the total structural weight of the following three types of designs
are compared for simply supported circular truss-grids:

(A) Optimal solution with Me ~ 0, Mr = 0 in the inner region and Me = 0, Mr ~

oin the outer region with an Me-impulse along the edge.
(B) Purely circumferential solution with Me ~ 0, Mr = O.
(C) Purely radial solution with M r ~ 0, Me = O.
Considering truss-grids with purely moment-dependent cost functions (c = 0), it

was noted earlier[2] that a design C is highly uneconomical for longer spans. For ex
ample, at R = v'2, the total weight of design C was found 1317% higher than that of
design B, see [2].

In the case of the more realistic cost functions with a nonzero c-value, the savings
achieved by the optimal solution become even higher. In Table 1, we compare the total
structural weight for the particular cases of R = 1.5, 2.5 and 3, and c = 0.3. It can
be seen from Fig. 6 that for c = 0.3, the maximum nondimensional radius is 1.49, at
which the structural weight would reach theoretically an infinite value. Beyond this
maximum radius (spanning capacity), the structure is not even capable of carrying its
own weight. This conclusion is implied by the symbols "> 00" in Table 1.

Actual values of the nondimensional structural weight 2<1> for designs A and Bare
also shown in Table 1, together with the percentage of the excess weight of design B
over design A:

(100)

It will be seen that at R = 3, c = 0.3, even the weight difference between designs
A and B is most significant.

CONCLUSIONS

(I) The problem of optimizing the layout of long-span truss-grids was examined. Not
ing that at such spans self-weight (dead load) becomes the governing load com
ponent, a general theory and optimality criteria were presented for determining
the optimal layout of vertical trusses over a horizontal area of any shape and for
any load condition. In estimating the weight-per-unit length of the truss, it was
assumed that the weight of the chords is governed by bending moment and the
weight of the web members by the shear force on the truss.

(2) The above theory was then applied to axially symmetric truss-grids. In such sys
tems, chords resisting moments may run in radial or circumferential directions,
whereas the web members transmitting shear are contained in planes in the radial
direction. Then optimization consists of finding the proportions of loads carried
by radial and circumferential moments (chords). However, the solutions obtained
satisfy the sufficient conditions of optimality of the general theory (for not nec
essarily axisymmetric systems) and hence it is established that for axisymmetric
loads and supports, the optimal design is in fact axially symmetric.

(3) Considering simply supported circular truss-grids, it has been found that for
shorter spans a purely circumferential moment field is optimal. At longer spans,
the optimal solution consists of purely circumferential (positive) moments in an
inner region, purely radial (negative) moments in an outer region and a circum
ferential moment-impulse (concentrated chord-rings) along the edge. At very short
spans, the self-weight can be neglected and then any statically admissible com
bination of positive radial and circumferential moments is equally optimal.

(4) For circular truss-grids with a built-in edge (full fixity along the perimeter), the
optimal solution always consists of a purely circumferential moment field in the
inner region and a purely radial moment field in the outer region.

(5) In all optimal solutions having two regions, the radius (a) of the optimal region
boundary decreases with the radius (R) of the truss-grid (Figs. 1 and 7).
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(6) It can be seen from Fig. 4 that layout optimization of long-span truss-grids usually
results in considerable savings in structural weight amounting to several hundred
percent excess weight of the nonoptimal solution over the optimal one.

(7) All solutions in this paper were obtained in a closed analytical form. Moreover.
the same optimal solution was obtained from both primal and dual formulation.
This study demonstrates the potential value of continuum formulation and rela
tively sophisticated mathematical methods in problems of practical significance.
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APPENDIX

PROOF THAT THE PRAGERIAN DISPLACEMENT FIELD IN THE OUTER REGION
SATISFIES THE OPTIMALITY CONDITION FOR ZERO CIRCUMFERENTIAL

MOMENTS

The considered displacement field is given in eqn (55bl, and the optimality condition for Me ;: 0 is in
eqn (39). By eqn (55b),

U2 '= _eU(R~r){(2a + Rl cosh[(3(R - r)] + [a(R + a)/(3 + (3] sinh[13(R - rl]). (All

Then one of the inequality conditions under (39),

IA2l

implies

(for a < I' < R) (2a + Rl cosh[l3(R - I'll + [CaR + I + 2(2 )/(3] sinh[(3(R - 1')]

~ (I' + 2o:){cosh[(3(R - 1')] + [(R + al/(3] sinh[(3(R - 1')]). (A3!

or

or

(R - r) cosh[(3(R - r)) ~ [rR + aR - I + ra)/(3] sinh[(3(R - r)].

(for a < r < R) tanh[(3(R - r)] ~ [2(3(R - r))/[r(R + a) + aR - 1],

(A4)

lAS)

Moreover, for r ~ Q and r = R, Me > 0 and hence by (38) the inequalities (A2)-(A51 are satisfied as
equalities: for r = Q and r = R,

tanh[(3(R - r)) = [2(3(R - r)]/[r(R + a)] + uR - I].

For (3 > I and r < R implies a known property of the function tanh( ):

d2

d,z {tanh[(3(R - r)]} < O.

Moreover, let

fer) = K(R - r)/(r - b),

(A6)

IA7J

(AX!

with b < r < R.
Then the inequality If fld,z > 0 holds for any positive constants K, Rand b. This can be shown by

taking

J'(-r r-b R-b
(lIK)f(r) = -- + -- - 1 = -- - I,

r-b r-b r-b
(A9)
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The RHS of eqn (A5) can be brought to the form in (AS) by the following rearrangement:

--=----'2~~(R~--::r)_-:- = _1_ 2~(R - r)
fIr) = r(R + a) + aR - R + a r - [(1 - aR)/(R + a)] .

Sincc II < r < R in the considered region, it is only necessary to show that

a > (1 - aR)/(R + a).
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(AIO)

(All)

This can be shown on the basis of eqn (A6) with r = a. Since in the latter the lefl-hand side and the
numerator of the right-hand side are positive, the denominator of the right-hand side must also be positive;

aIR + a) + aR - 1 > 0, (AI2)

which implies (All). Finally, since tanh[~(R - r)) = fIr) at r = a and r = R, tanh[~(R - r)] is concave
and fIr) is convex for a E; r E; R, eqn (A5), and hence (A2), is now proved. It can be shown similarly that
for a E; r E; R,

(I + u2)(-r + cR) E; U2. (AI3)


